Projective Splitting with Forward Steps: Asynchronous and Block-Iterative Operator Splitting
نویسندگان
چکیده
This work is concerned with the classical problem of finding a zero of a sum of maximal monotone operators. For the projective splitting framework recently proposed by Combettes and Eckstein, we show how to replace the fundamental subproblem calculation using a backward step with one based on two forward steps. The resulting algorithms have the same kind of coordination procedure and can be implemented in the same block-iterative and potentially distributed and asynchronous manner, but may perform backward steps on some operators and forward steps on others. Prior algorithms in the projective splitting family have used only backward steps. Forward steps can be used for any Lipschitz-continuous operators provided the stepsize is bounded by the inverse of the Lipschitz constant. If the Lipschitz constant is unknown, a simple backtracking linesearch procedure may be used. For affine operators, the stepsize can be chosen adaptively without knowledge of the Lipschitz constant and without any additional forward steps. We close the paper by empirically studying the performance of several kinds of splitting algorithms on the lasso problem.
منابع مشابه
A Simplified Form of Block-Iterative Operator Splitting, and an Asynchronous Algorithm Resembling the Multi-Block ADMM∗
This paper develops what is essentially a simplified version of the block-iterative operator splitting method already proposed by the author and P. Combettes, but with more general initialization conditions. It then describes one way of implementing this algorithm asynchronously under a computing model inspired by modern HPC environments, which consist of interconnected nodes each having multip...
متن کاملAsynchronous block-iterative primal-dual decomposition methods for monotone inclusions
We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in established methods. Determinist...
متن کامل2 7 N ov 2 01 5 Asynchronous Block - Iterative Primal - Dual Decomposition Methods for Monotone Inclusions ∗
We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in established methods. Determinist...
متن کاملOperator-splitting Methods Respecting Eigenvalue Problems for Convection-diffusion and Wave Equations
We discuss iterative operator-splitting methods for convection-diffusion and wave equations motivated from the eigenvalue problem to decide the splitting process. The operator-splitting methods are well-know to solve such complicated multi-dimensional and multi-physical problems. Often the problem, how to decouple the underlying operators, is not understood well enough. We propose a method base...
متن کاملA New Two-stage Iterative Method for Linear Systems and Its Application in Solving Poisson's Equation
In the current study we investigate the two-stage iterative method for solving linear systems. Our new results shows which splitting generates convergence fast in iterative methods. Finally, we solve the Poisson-Block tridiagonal matrix from Poisson's equation which arises in mechanical engineering and theoretical physics. Numerical computations are presented based on a particular linear system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018